Preconditioning Techniques for Sparse Linear Systems
نویسندگان
چکیده
منابع مشابه
Parallel two level block ILU preconditioning techniques for solving large sparse linear systems
We discuss issues related to domain decomposition and multilevel preconditioning techniques which are often employed for solving large sparse linear systems in parallel computations. We introduce a class of parallel preconditioning techniques for general sparse linear systems based on a two level block ILU factorization strategy. We give some new data structures and strategies to construct loca...
متن کاملDistributed Schur Complement Techniques for General Sparse Linear Systems
This paper presents a few preconditioning techniques for solving general sparse linear systems on distributed memory environments. These techniques utilize the Schur complement system for deriving the preconditioning matrix in a number of ways. Two of these pre-conditioners consist of an approximate solution process for the global system, which exploit approximate LU factorizations for diagonal...
متن کاملPreconditioning Techniques for Large LinearSystems: A Survey
This article surveys preconditioning techniques for the iterative solution of large linear systems, with a focus on algebraic methods suitable for general sparse matrices. Covered topics include progress in incomplete factorization methods, sparse approximate inverses, reorderings, parallelization issues, and block and multilevel extensions. Some of the challenges ahead are also discussed. An e...
متن کاملPreconditioning Waveform Relaxation Iterations for Differential Systems
We discuss preconditioning and overlapping of waveform relaxation methods for sparse linear diierential systems. It is demonstrated that these techniques signiicantly improve the speed of convergence of the waveform relaxation iterations resulting from application of various modes of block Gauss-Jacobi and block Gauss-Seidel methods to diierential systems. Numerical results are presented for li...
متن کاملA Novel Aggregation Method based on Graph Matching for Algebraic MultiGrid Preconditioning of Sparse Linear Systems
Multilevel techniques are very effective tools for preconditioning iterative Krylov methods in the solution of sparse linear systems; among them, Algebraic MultiGrid (AMG) are widely employed variants. In [2, 4] it is shown how parallel smoothed aggregation techniques can be used in combination with domain decomposition Schwarz preconditioners to obtain AMG preconditioners; the effectiveness of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012